تقنين حمل التدريب وفقا للسرعة الحرجة وتأثيرها علي بعض المتغيرات البدنية والمستوى الرقمي لناشئ سباحة ٤٠٠ متر حرة

نوع المستند : المقالة الأصلية

المؤلفون

1 قسم التدريب الرياضي بکلية التربية الرياضية جامعة کفرالشيخ

2 کلية التربية الرياضية للبنين بجامعة الاسکندرية

المستخلص

تطبيق السرعة الحرجة في السباحة يعتبر أسلوب حديث وغير مکلف، الا أن عدد الأدلة العلمية على السرعة الحرجة وتقنين التدريب اعتمادا عليها لا يزال نادرًا بسبب حداثته، لذا يهدف البحث الحالي الي تحديد السرعة الحرجة للسباحين الناشئين اعتمادا علي اربع سباقات مختلفة في السباحة الحرة والتعرف علي تأثير تقنين حمل التدريب وفقا للسرعة الحرجة علي بعض المتغيرات البدنية ومستوي الانجاز الرقمي لناشئين سباحة ٤٠٠ م حرة . استخدم الباحثان المنهج التجريبي وتم الاعتماد علي ١٦ سباح بنادي کفر الشيخ الرياضي مواليد ٢٠٠٦، تم تقسيمهم الي مجموعتين احداهما تجريبية وأخري ضابطه، يتطلب قياس السرعة الحرجة تحديد الوقت الذي يقطعة السباح في کل مسافة والذي يتم تسجيله علي (المحور السيني x-axis) لمجموعة من مسافات السباحة المختلفة والتي يتم تسجيلها علي (المحور الصادي y-axis ).
قام الباحثان بتقنين احمال التدريب وفقا للسرعة الحرجة لمدة ٨ أسابيع تدريبية ،وتوصل الباحثان الي تحسن في جميع المتغيرات البدنية والمتمثلة في (السرعة، تحمل السرعة، التحمل) وتحسن في مستوي الإنجاز الرقمي ٤٠٠م لکلا من المجموعتين، الا انه عند مقارنة المجموعة التجريبية بالضابطة فکان التحسن واضح في متغير التحمل ومتغير مستوي الإنجاز الرقمي للمجموعة التجريبية.

الكلمات الرئيسية


  1. ريسان خريبط، أبو العلا احمد عبد الفتاح(٢٠١٦م): التدريب الرياضي، مركز الكتاب للنشر، الطبعة الاولي، القاهرة.
  2. Aspenes, S., Kjendlie, P. L., Hoff, J., & Helgerud, J. (2009). Combined strength and endurance training in competitive swimmers. Journal of sports science & medicine8(3), 357.
  3. Bassett, D. R., & Howley, E. T. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Medicine and science in sports and exercise32(1), 70-84.
  4. Billat, L. V. (2001). Interval training for performance: a scientific and empirical practice. Sports medicine31(1), 13-31.
  5. Botonis, P. G., Toubekis, A. G., Terzis, G. D., Geladas, N. D., & Platanou, T. I. (2019). Effects of Concurrent Strength and High-Intensity Interval Training on Fitness and Match Performance in Water-Polo Players. Journal of Human Kinetics67(1), 175-184.
  6. Burnley, M., & Jones, A. M. (2007). Oxygen uptake kinetics as a determinant of sports performance. European Journal of Sport Science7(2), 63-79.
  7. Clark, I. E., West, B. M., Reynolds, S. K., Murray, S. R., & Pettitt, R. W. (2013). Applying the critical velocity model for an off-season interval training program. The Journal of Strength & Conditioning Research27(12), 3335-3341.
  8. Dalamitros, A. A., Fernandes, R. J., Toubekis, A. G., Manou, V., Loupos, D., & Kellis, S. (2015). Is speed reserve related to critical speed and anaerobic distance capacity in swimming?.The Journal of Strength & Conditioning Research29(7), 1830-1836.
  9. Dekerle, J., Pelayo, P., Clipet, B., Depretz, S., Lefevre, T., & Sidney, M. (2005). Critical swimming speed does not represent the speed at maximal lactate steady state. International journal of sports medicine26(07), 524-530.
  • Denadai, B. S., Greco, C. C., & Teixeira, M. (2000). Blood lactate response and critical speed in swimmers aged 10–12 years of different standards. Journal of sports Sciences18(10), 779-784.
  • Fukuba, Y., & Whipp, B. J. (1999). A metabolic limit on the ability to make up for lost time in endurance events. Journal of Applied Physiology87(2), 853-861.
  • Garrido, N., Marinho, D. A., Reis, V. M., van den Tillaar, R., Costa, A. M., Silva, A. J., & Marques, M. C. (2010). Does combined dry land strength and aerobic training inhibit performance of young competitive swimmers?. Journal of sports science & medicine9(2), 300.
  • Hill, D. W., Poole, D. C., & Smith, J. C. (2002). The relationship between power and the time to achieve VO~ 2~ m~ a~ x. Medicine and science in sports and exercise34(4), 709-714.
  • Jones, A. M., Burnley, M., Black, M. I., Poole, D. C., & Vanhatalo, A. (2019). The maximal metabolic steady state: redefining the ‘gold standard’. Physiological reports7(10), e14098.
  • Jones, A. M., Vanhatalo, A., Burnley, M., Morton, R. H., & Poole, D. C. (2010). Critical power: implications for determination of VO2max and exercise tolerance. Med Sci Sports Exerc42(10), 1876-90.
  • Junior, E. B., Aidar, F. J., de Souza, R. F., de Matos, D. G., Camara, M. B., Gomes, A. A. B., ... & Garrido, N. D. (2016). Swimming performance evaluation in athletes submitted to different types of strength training. Journal of Exercise Physiologyonline19(6).
  • Liao, T. (2008, January). Tactics analysis on women swimming athletes in the 800m freestyle swimming race using speed coefficient theory. In First International Workshop on Knowledge Discovery and Data Mining (WKDD 2008)(pp. 453-456). IEEE.
  • Machado, M. V., Borges, J. P., Galdino, I. S., Cunha, L., Sá Filho, A. S., Soares, D. C., & Junior, O. A. (2019). Does critical velocity represent the maximal lactate steady state in youth swimmers?. Science & Sports34(3), e209-e215.
  • Machado, M. V., Junior, O. A., Marques, A. C., Colantonio, E., Cyrino, E. S., & De Mello, M. T. (2011). Effect of 12 weeks of training on critical velocity and maximal lactate steady state in swimmers. European Journal of Sport Science11(3), 165-170.
  • Marinho, D. A., Barbosa, T. M., Silva, A. J., & Neiva, H. P. (2012). Applying anaerobic critical velocity in non-elite swimmers. International Journal of Swimming Kinetics1(1), 33-50.
  • Morton, R. H., & Billat, L. V. (2004). The critical power model for intermittent exercise. European journal of applied physiology91(2), 303-307.
  • Pettitt, R. W. (2012). Using scatterplots to teach the critical power concept. Advances in Physiology Education36(2), 172-175.
  • Pettitt, R. W., Placek, A. M., Clark, I. E., Jamnick, N. A., & Murray, S. R. (2015). Sensitivity of prescribing high-intensity, interval training using the critical power concept. International Journal of Exercise Science8(3), 1.
  • Peyrebrune, M. C., Toubekis, A. G., Lakomy, H. K. A., & Nevill, M. E. (2014). Estimating the energy contribution during single and repeated sprint swimming. Scandinavian journal of medicine & science in sports24(2), 369-376.
  • POOLE, D. C., WARD, S. A., GARDNER, G. W., & WHIPP, B. J. (1988). Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics31(9), 1265-1279.
  • Ribeiro, L. F. P., Lima, M. C. S., & Gobatto, C. A. (2010). Changes in physiological and stroking parameters during interval swims at the slope of the d–t relationship. Journal of Science and Medicine in Sport13(1), 141-145.
  • Rinehardt, K. F., Kraemer, R. R., Gormely, S., & Colan, S. (1991). Comparison of maximal oxygen uptakes from the tethered, the 183-and 457-meter unimpeded supramaximal freestyle swims. International journal of sports medicine12(01), 6-9.
  • Rodriguez, E. (2000). Maximal oxygen uptake and cardiorespiratory response to maximal 400-m free swimming. J Sports Med Phys Fitness40, 87-95.
  • Rodriguez, F. A., Moreno, D., & Keskinen, K. L. (2003). Validity of a two-distance simplified testing method for determining critical swimming velocity. Biomechanics and medicine in swimming IX. Saint-Etienne: University of Saint Etienne, 385-90.
  • Schnitzler, C., Ernwein, V., & Chollet, D. (2007). Comparison of spatio-temporal, metabolic, and psychometric responses in recreational and highly trained swimmers during and after a 400-m freestyle swim. International journal of sports medicine28(02), 164-171.
  • Scott, B. E., Burden, R., & Dekerle, J. (2020). Critical speed, D’and pacing in swimming: Reliability of a popular critical speed protocol applied to all four strokes.
  • Svedahl, K., & MacIntosh, B. R. (2003). Anaerobic threshold: the concept and methods of measurement. Canadian journal of applied physiology28(2), 299-323.
  • Toubekis, A. G., & Tokmakidis, S. P. (2013). Metabolic responses at various intensities relative to critical swimming velocity.The Journal of Strength & Conditioning Research,27(6), 1731-1741.
  • Toubekis, A. G., Peyrebrune, M. C., Lakomy, H. K., & Nevill, M. E. (2008). Effects of active and passive recovery on performance during repeated-sprint swimming. Journal of sports sciences26(14), 1497-1505.
  • Toubekis, A. G., Tsami, A. P., & Tokmakidis, S. P. (2006). Critical velocity and lactate threshold in young swimmers. International Journal of Sports Medicine27(02), 117-123.
  • Toubekis, A. G., Vasilaki, A., Douda, H., Gourgoulis, V., & Tokmakidis, S. (2011). Physiological responses during interval training at relative to critical velocity intensity in young swimmers. Journal of Science and Medicine in Sport14(4), 363-368.
  • Tsalis, G., Toubekis, A. G., Michailidou, D., Gourgoulis, V., Douda, H., & Tokmakidis, S. P. (2012). Physiological responses and stroke-parameter changes during interval swimming in different age-group female swimmers. The Journal of Strength & Conditioning Research26(12), 3312-3319.
  • Vanhatalo, A., Doust, J. H., & Burnley, M. (2008). A 3-min all-out cycling test is sensitive to a change in critical power. Medicine and science in sports and exercise40(9), 1693-1699.
  • Wakayoshi, K., Yoshida, T., Udo, M., Harada, T., Moritani, T., Mutoh, Y., & Miyashita, M. (1993). Does critical swimming velocity represent exercise intensity at maximal lactate steady state?.European journal of applied physiology and occupational physiology,66(1), 90-95.
  • Weltman, A., Snead, D., Stein, P., Seip, R., Schurrer, R., Rutt, R., & Weltman, J. (1990). Reliability and validity of a continuous incremental treadmill protocol for the determination of lactate threshold, fixed blood lactate concentrations, and VO2max. International journal of sports medicine11(01), 26-32.